Target Support Package™ 4
Reference Guide

For Use with TlI's C5000™

MATLAB

-‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Target Support Package™ Reference Guide
© COPYRIGHT 2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

September 2009 Online only New for Version 4.0 (Release 2009b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

System Requirements

Block Reference

2

CAN Message Handling Blocks (canmsglib) 2-2
C5510 DSK (¢5510dsKk)cciiiiiniinnnnnnn. 2-3
Host Communication (hostcommlib) 2-4

Blocks — Alphabetical List

3

Index

iii

iv Contents

System Requirements

For detailed information about the software and hardware required to use
Target Support Package™ software, refer to the Target Support Package
system requirements areas on the MathWorks Web site:

¢ Requirements for Target Support Package:
www.mathworks.com/products/target-package/requirements.html

¢ Requirements for use with TI's C5000™:
www.mathworks.com/products/target-package/ti-adaptor/

http://www.mathworks.com/products/target-package/requirements.html
http://www.mathworks.com/products/target-package/ti-adaptor/%20

l System Requirements

1-2

Block Reference

CAN Message Handling Blocks
(canmsglib) (p. 2-2)

C5510 DSK (c5510dsk) (p. 2-3)

Host Communication (hostcommlib)
(p. 2-4)

Blocks for TMS320VC5510 DSP
Starter Kit (DSK) (¢5510dsk)

Blocks for TMS320VC5510 DSP
Starter Kit (DSK) (c5510dsk)

Blocks for TMS320VC5510 DSP
Starter Kit (DSK) (¢5510dsk)

2 Block Reference

CAN Message Handling Blocks (canmsglib)

CAN Pack Pack individual signals into CAN
message

CAN Unpack Unpack individual signals from CAN
messages

2-2

C5510 DSK (c5510dsk)

C5510 DSK (c¢5510dsk)

C5510 DSK ADC

C5510 DSK DAC

Configure AIC23 and peripherals to
collect data from analog jacks and
output digital data

Configure AIC23 codec and
peripherals to send data stream to
output jack

2-3

2 Block Reference

2-4

Host Communication (hostcommlib)

Byte Pack

Byte Reversal
Byte Unpack

UDP Receive

UDP Send

Convert input signals to uint8
vector

Reverse order of bytes in input word

Unpack UDP uint8 input vector into
Simulink® data type values

Receive uint8 vector as UDP
message

Send UDP message

Blocks — Alphabetical List

Byte Pack

3-2

Purpose
Library

Description

Byte Padk
Padk

Dialog
Box

Convert input signals to uint8 vector
Host Communication (hostcommlib)

Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Because UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using

the UDP protocol.

E! Function Block Parameters: Pack il

—Byte pack (mask)

Pack input data into a single output vector of type uintd. Insert before
UDP Send block to produce a uintd byte vector from multiple vectors
of varying data type.

—Parameters
Input port data types (cell array):
[(double |

Byte alignmentl‘l j

0K I Cancel | Help | Apply |

Input port data types (cell array)
Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ‘’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block always has at least one input port and
only one output port.

Byte Pack

Example

Byte alignment
This option specifies how to align the data types to form the uint8
output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8-byte boundaries depending
on the value you choose. The value defaults to 1. Given the
alignment value, each signal data value begins on multiples of
the alignment value. The alignment algorithm ensures that each
element in the output vector begins on a byte boundary specified
by the alignment value. Byte alignment sets the boundaries
relative to the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
with no holes between any data types for any combination of data
types and signals.

Sometimes, you can have multiple data types of varying lengths. In such
cases, specifying a 2-byte alignment can produce 1-byte gaps between
uint8 or int8 values and another data type. In the pack implementation,
the block copies data to the output data buffer 1 byte at a time. You can
specify any of the data alignment options with any of the data types.

Use a cell array to enter input data types in the Input port data types
parameter. The order of the data types you enter must match the order
of the data types at the block input.

3-3

Byte Pack

3-4

See Also

E! Function Block Parameters: Pack il

—Byte pack (mask)

Pack input data into a single output vector of type uintd. Insert before
UDP Send block to produce a uintd byte vector from multiple vectors
of varying data type.

—Parameters
Input port data types (cell array):
|{'uint3 " 'uint3: '.'uint‘lS'.'double'.'uintB'.'double'.'single'[}

Byte alignment|2 j

0K I Cancel | Help | Apply |

In the cell array, you provide the order in which the block expects to
receive data—uint32, uint32, uint16, double, uint8, double, and

single. With this information, the block automatically provides the
proper number of input ports.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

The example shows the following data types:
{'uint32', 'uint32', 'uint16', 'double’', 'uint8', 'double', 'single'}

When the signals are scalar values (no matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes. Then,
the second signal value starts at 2 bytes, and the third at 4 bytes. Next,
the fourth signal value follows at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. As the example shows, the
packing algorithm leaves a 1-byte gap between the uint8 data value
and the double value.

Byte Reversal, Byte Unpack

Byte Reversal

Purpose
Library

Description

Byte
reversal

BEyte Revers=al

Dialog
Box

Reverse order of bytes in input word
Host Communication (hostcommlib)

Byte reversal changes the order of the bytes in data you input to the
block. Use this block when your process communicates between targets
that use different endianness, such as between Intel® processors that
are little endian and others that are big endian. Texas Instruments™
processors are little-endian by default.

To exchange data with a processor that has different endianness, place
a Byte Reversal block just before the send block and immediately after
the receive block.

E! Function Block Parameters: Byte Ri il

—Byte Reversal (mask)

Use Byte Reversal block for communicating with a target processor
thatis big-endian. Insert before the Byte Pack block or just after Byte
Unpack block to ensure thatthe data values are transmitted properly.

—Parameters

Mumber of inputs:

0K I Cancel | Help | Apply |

Number of inputs
Specify the number of input ports for the block. The number of
input ports adjusts automatically to match value so the number of
outputs equals the number of inputs.

3-5

Byte Reversal

3-6

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves
through output port 1, and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. In this figure, the input
and output ports match for each path.

intlE

-232

Con=tant

[Bin 1111 1311 po0l1 0110 ‘

wintlE

intlé

ol [Bim 0001 0330 1337 1331 ‘

intlfout

intlé

232

wintlf [bin 1110 1010 0000 o000
wintii

vvy

Eyte Beverszal

Constantl [

bin 0000 0000 1110 1010] |

Eyte Revezs=al

wintdZ

uintlé

232

Con=tantd [

bin 0000 0000 0000 0003 0000 0000 1110 1010' |

See Also

uint3Z

Byte Pack, Byte Unpack

uintlfout

- | bin 1110 1010 0000 0000 0000 0000 0000 0000'

uinwdZout

Byte Unpack

Purpose
Library

Description

Byte Unpadk
Unpadk

Dialog
Box

Unpack UDP uint8 input vector into Simulink data type values
Host Communication (hostcommlib)
Byte Unpack is the inverse of the Byte Pack block. It takes a UDP

message from a UDP receive block as a uint8 vector, and outputs
Simulink data types in various sizes depending on the input vector.

The block supports all Simulink data types.

=1 Function Block Parameters: Unpack il

—Byte Unpack (mask)

Unpack a binary byte vector to extract data. Insert after UDP Recw
block to break-up a UDP packetinto its constituent data vectors.

—Parameters
Output port dimensions (cell array):
{11}

Output port data types (cell array):
|{'double'}

Byte alignmentl‘l j

0K I Cancel | Help | Apply |

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies the
dimension that the MATLAB® size function returns for the
corresponding signal. Usually you use the same dimensions
as you set for the corresponding Byte Pack block in the model.
Entering one value means that the block applies that dimension
to all data types.

3-7

Byte Unpack

Output port data types (cell array)
Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types—single,
double, int8, uint8, int16, uint16, int32, and uint32, and
Boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

Byte Alignment
This option specifies how to align the data types to form the input
uint8 vector. Match this setting with the corresponding Byte
Pack block alignment value of 1, 2, 4, or 8 bytes.

Example This figure shows the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry shown is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16', 'double', 'uint8', 'double', 'single'}.

=] Function Block Parameters: Unpack il

—Byte Unpack (mask)

Unpack a binary byte vector to extract data. Insert after UDP Recv
block to break-up a UDP packetinto its constituent data vectors.

—Parameters

Output port dimensions (cell array):
I{‘l.‘l.[2.4].[4.4].[2,2].‘].[3.3][}

Output port data types (cell array):

I{'uint3 "'uint32','uint1€','double’,'uintd','double’,'single'}

Byte alignment|2 j

0K I Cancel Help Apply

3-8

Byte Unpack
|

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalar values and matrices to
demonstrate entering nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

See Also Byte Pack, Byte Reversal

C5510 DSK ADC

3-10

Purpose

Library

Description

CE510
Ot

CEE10 DSK ADC

CEE510 DSK ADC

Dialog
Box

Configure AIC23 and peripherals to collect data from analog jacks and
output digital data

TMS320VC5510 DSP Starter Kit (DSK) (¢5510dsk)

Configures the AIC23 codec and the TMS320C5510 peripherals to
output a stream of digital data. The block collects this data from the
analog jacks on the C5510 DSP Starter Kit board.

x

—C5510 DSK ADC (mask) (ink)

Configures the AIC23 codec and the TM53205510 peripherals to
output a stream of data collected from the analog jacks on the
5510 DSP Starter Kit board,

—Parameters

Sampling rate: IB kHz

[l
=

Waord length: I 16-hit

Samples per frame:
|54

[Inherit sample time

Cancel Help

C5510 DSK ADC

Sampling rate
Set the rate at which the analog-to-digital converter samples the
analog input. A higher rate increases the resolution of the data
the ADC outputs.

Word length
Set the number of data bits the ADC creates for each sample.
Increasing the word length increases the accuracy of the data in

each sample. If your model also contains a DAC block, set the
word length in the DAC block to match that of the ADC block.

Samples per frame
Set the number of samples the ADC buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. Thus, if
you set Sampling Rate to 8 kHz, and Samples per frame to 32,
the resulting frame rate is 250 frames per second (8000/32 = 250).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or from the Simulink base rate. You can locate
the Simulink base rate in the Solver options in Configuration
Parameters. Selecting Inherit sample time directs the block to use
the specified rate in model configuration. Entering -1 configures
the block to accept the sample rate from the upstream HWI, Task,
or Triggered Task blocks.

See Also C5510 DSK DAC

3-11

C5510 DSK DAC

3-12

Purpose

Library

Description

CEE10

CEE10 DSK DAC

CEE10 DSK DAC

Dialog
Box

Configure AIC23 codec and peripherals to send data stream to output
jack

TMS320VC5510 DSP Starter Kit (DSK) (¢5510dsk)

Configures the AIC23 codec and the TMS3205510 peripherals to send a
stream of data to the output jack on the C5510 DSP Starter Kit board.

E! Sink Block Parameters: {5510 DSK DAC il

— 5510 DSK DAC {mask) {ink)

Configures the AIC23 codec and the TM53205510 peripherals to send a stream of
data to the output jack on the C5510 DSP Starter Kit board.

—Parameters
sampling rate: x
Waord length: I 16-hit ll

Samples per frame:
o4

oK Cancel Help Apply

C5510 DSK DAC

See Also

Sampling Rate
Set the rate at which the digital-to-analog converter receives each
data sample. If your model contains an ADC block, set this value
to match the sampling rate of the ADC block.

Word length
Set the number of bits in each data input sample the DAC. If your
model also contains an ADC block, set the word length in the
DAC block to match that of the ADC block. If you do not use an
accurate setting, the DAC cannot convert the data correctly.

Samples per frame
Set the number of samples per data input frame. Match this value
with the value of the block creating the data frames. This value
defaults to 64 samples per frame.

C5510 DSK ADC

3-13

CAN Pack
|

Purpose Pack individual signals into CAN message
. . .
lerclry CAN Communication
L L
Description
Signall
— Signal2 — DriverDoorlodk i
Dats IMessage: CAN NMsg CAN Msg IMessage: CAN Msg CAN Msg File: demoWNT_CANdbFiles.dbc
Standard |D: 250 ' Signalz Standard ID0: 250 ' Message: DoorContrelsg CAN Msg
. Standard 1D0: 250
Signal4 PassengerDoorLod:
CAN Padk CAN Padk
[With raw data input) [With manuslly specified data input) CAM Padk

(With CANdb specified data input)

The CAN Pack block loads signal data into a message at specified
intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

CAN Pack block has one input port by default. The number of input
ports is dynamic and depends on the number of signals you specify
for the block. For example, if your block has four signals, it has four
input ports.

Signali
Signalz hlessage: CAN Msg
. Standard |b: 250 CAN Msgp
Signal3
Signald

CAN Fack

This block has one output port, CAN Msg. The CAN Pack block takes
the specified input parameters and packs the signals into a message.

Other Supported Features
The CAN Pack block supports:

3-14

CAN Pack

Dialog
Box

¢ The use of Simulink® Accelerator™ mode. Using this feature, you can
speed up the execution of Simulink models.

® The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

¢ Code generation using Real-Time Workshop® to deploy models to
targets.

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

Use the Function Block Parameters dialog box to select your CAN Pack
block parameters.

=] Function Block Parameters: CAN Pack x|

—CAN Pack

Pack data into a CAN Message.

—Parameters

Data s input as: -
CANdb file: I Erowse. .. |
Message list: I(none} LI

—Message

MName: IC.-'-\N Msg

Identifier type: IStandard (11-bit identifier) j
Identifier: I 250

Length (bytes): IB

OK. I Cancel Help Apply

3-15

CAN Pack

Parameters

Data is input as
Select your data signal:

e raw data: Input data as a uint8 vector array. If you select this
option, you only specify the message fields. All other signal
parameter fields are unavailable. This option opens only one
input port on your block.

¢ manually specified signals: Allows you to specify data signal
definitions. If you select this option, use the Signals table to
create your signals. The number of input ports on your block
depends on the number of signals you specify.

3-16

CAN Pack

[Function Block Parameters: CAN Pack x|

—CAN Pack

Pack data into a CAN Message,

—Parameters
Data is input as: |manually spedified signals ;I

CANdb file: I Browse... |
Message list: I(none} LI

Messag

Mame: |CAN Msg

Identifier type: |Standard {11-bit identifier) LI

Identifier: I 250

Length (bytes): I 8

Signals: Add signal Delete signal |
Start |Length |Byte |Data Multiplex Multiplex)

Name bit (bits) e ||z G value Factor |[Offset |Min |Max

Signall 1] 8|LE = ||signed LI Standard | 1] 1 0| -Inf| Inf

Signal2 8 8|LE xlfsigned *|fstandard x| 0 1 0| -Inf| Inf

Signal3 16 8|l >lfsigned +|lstandard ¥ 0 1 0| Anf| Inf

Signal4| 24 8lle lfsigned =|fstandard | 0 1 0| Inf| Inf

Ok I Cancel | Help | Apply |

¢ CANdb specified signals: Allows you to specify a CAN
database file that contains message and signal definitions. If
you select this option, select a CANdb file. The number of input
ports on your block depends on the number of signals specified
in the CANdDb file for the selected message.

3-17

CAN Pack

[Function Block Parameters: CAN Pack (With CANdb s

CANdb file: | CANdbFiles. dbc

Browse... |

x|
—CAN Pack
Pack data into a CAN Message,
—Parameters
Data is input as: |CANdb spedified signals ;I

Message list: IDoorCDnh'olMsg LI
Messag
Mame: | DoorControlMsg
Identifier type: |Standard (11-bit identifier) LI

Identifier: I 400

Length (bytes): I 8

Signals: Add signal Delete signal |
Start [Length |Byte |Data Multiplex Multiplex .
Name bit (bits) order value Factor |Offset |Min |Max
DriverD 1 LLE = Jjunsigned LI Standard x| o 1] 1
Passeny 0 1JLE * [junsigned LIIStandard hd 1] 0 1
oK I Cancel | Help Apply

CANdb file

This option is available if you specify that your data is input via

a CANdb file in the Data is input as list. Click Browse to find

the appropriate CANdb file on your system. The message list

specified in the CANdDb file populates the Message section of the

dialog box. The CANdb file also populates the Signals table for

the selected message.

Message list

This option is available if you specify that your data is input via a
CAN(db file in the Data is input as field and you select a CANdb
file in the CANdD file field. Select the message to display signal

details in the Signals table.

3-18

CAN Pack

Message

Name
Specify a name for your CAN message. The default is CAN
Msg. This option is available if you choose to input raw data or
manually specify signals. This option in unavailable if you choose
to use signals from a CANdb file.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option 1s available if you choose to input raw data
or manually specify signals. For CANdb specified signals, the
Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a positive
integer from O through 2047 for a standard identifier and from
0 through 536870911 for an extended identifier. You can also
specify hexadecimal values using the hex2dec function. This
option is available if you choose to input raw data or manually
specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your data input, the
CAN(db file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw
data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdb file.

If you are using a CANdDb file, the data in the file populates this table
automatically and you cannot edit any fields. To edit signal information,
switch to manually specified signals.

3-19

CAN Pack

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message data. The
start bit must be an integer from O through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

e | E: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

3-20

CAN Pack

Bit Number

Bit 7

Bit6

Bit5

Bit 4

Bit3

Bit 2

Bit1l

Bit 0

Byte 0

Data Byte Number

15

3l

14

a0

13

23

12

Data be

qgins at the least si

gnificant

11

10

Byte 3 bit and starts at 20

a9 as a7 a6 s 34 a3 3z

Data is writen up to the most significant

Byte 4 bit and ends at 27

47 a6 45 44 43 42 41 40
Byte §

55 54 53 52 51 50 43 43
Byte 6

63 62 &1 60 59 58 57 56
Byte 7

Little Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

BE: Where byte order is in big-endian format (Motorola®). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

3-21

CAN Pack

3-22

Bit Number

Bit7

Data Byte Number

18

17

Data iswriten up to the most
significant bit and ends at |11
31 a0 29 27 26 5 24
Data begins at the least significant
Byte 3 it and starts at 20
a9 L a7 a6 as 34 a3 az
Byte 4
47 a6 45 44 43 42 41 40
Byte §
55 54 53 52 51 50 43 43
Byte 6
63 62 61 &0 59 58 57 56
Byte 7

Big Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.

Choose from:

signed (default)

unsigned
single
double

CAN Pack

Multiplex type
Specify how the block packs the signals into the CAN message
at each timestep:

e Standard: The signal is always packed at each timestep.

® Multiplexor: The Multiplexor signal, or the mode signal is
always packed. You can specify only one Multiplexor signal
per message.

e Multiplexed: The signal is packed if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, a message has four signals with the following types

and values.
Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example

¢ The block packs Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

e [f the value of Signal-D is 1 at a particular timestep, then the
block packs Signal-B along with Signal-A and Signal-D in that
timestep.

e [f the value of Signal-D is 0 at a particular timestep, then the
block packs Signal-C along with Signal-A and Signal-D in that
timestep.

e [f the value of Signal-D is not 1 or 0, the block does not pack
either of the Multiplexed signals in that timestep.

3-23

CAN Pack

Multiplex value
This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to pack
the Multiplexed signal. The Multiplex value must be a positive
integer or zero.

Factor
Specify the Factor value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 3-24 to understand how physical
values are converted to raw values packed into a message.

Offset
Specify the Offset value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 3-24 to understand how physical
values are converted to raw values packed into a message.

Min
Specify the minimum physical value of the signal. The default
value 1s -inf (negative infinity). You can specify any number
for the minimum value. See “Conversion Formula” on page 3-24
to understand how physical values are converted to raw values
packed into a message.

Max
Specify the maximum physical value of the signal. The default
value is inf. You can specify any number for the maximum
value. See “Conversion Formula” on page 3-24 to understand
how physical values are converted to raw values packed into a
message.

Conversion Formula

The conversion formula is

raw_value = (physical_value - Offset) / Factor

3-24

CAN Pack
|

where physical value is the value of the signal after it is saturated
using the specified Min and Max values. raw_value is the packed
signal value.

See Also CAN Unpack

3-25

CAN Unpack

Purpose Unpack individual signals from CAN messages
. . .
lerclry CAN Communication
L L
Description
Signal1
DriverDoorLod
u CCAN N A Signalz File: demoWNT_CANdEFiles.dbe
cAN MegtiEssage: CAN Msg AN M Message: CAN Msg -
CAN Msg Standard |D- 250 Dats CAN Msg Standard 10: 250 . CAN Msg Message: DoorControlMsg
Signal2 Standard |0 250
PassengerDoorlodk
Signal4
CAN Unpadk

(With raw data cutput)

CAN Unpade

{With manusally specified data cutput)

CAN Unpadk
(With CANdE specified data cutput)

The CAN Unpack block unpacks a CAN message into signal data using
the specified output parameters at every timestep. Data is output as

individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN Unpack block has one output port by default. The number
of output ports is dynamic and depends on the number of signals you
specify for the block to output. For example, if your block has four

signals, it has four output ports.

Meszage: CAN hisg

AN
*9 standard ID: 250

Signali
Signalz
Signalz

Signald

CAMN Unpack

Other Supported Features

The CAN Unpack block supports:

3-26

CAN Unpack

® The use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models.

® The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

® Code generation using Real-Time Workshop to deploy models to
targets.

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

3-27

CAN Unpack

Dialog Use the Function Block Parameters dialog box to select your CAN
Box message unpacking parameters.
x
—CAM Unpack

Unpack data from a CAM Message.

—Parameters
Data to be output as: ©
CANdb file: I Browse... |
Message list: |(none} LI
—Message
Mame: |CAN Msg
Identifier type: |Standard (11-bit identifier) ;I
Identifier: I 250

Length (bytes): I 8

—Output ports

[~ output identifier [~ Cutput tmestamp [~ Cutput error

[output remate [~ output length ™ output status
CK I Cancel Help Apply
Parameters

Data to be output as
Select your data signal:

* raw data: Output data as a uint8 vector array. If you select
this option, you only specify the message fields. All other signal
parameter fields are unavailable. This option opens only one
output port on your block.

e manually specified signals: Allows you to specify data
signals. If you select this option, use the Signals table to
create your signals message manually.

3-28

CAN Unpack

x
—CAM Unpack-
Unpack data from a CAN Message.
—Parameters
Data to be output as:
CANdb file: I Browse... |
Message list: I(none} LI
Messag
MName: ICAN Msg
Identifier type: IStandard {11-bit identifier) j
Identifier: I 250
Length (bytes): |8
Signals: Add signal Delete signal |
Name Ei‘frt E’E}m E:’;:r E::: ’;ﬂ:de“ T;'L:’:"e" Factor |Offset |Min |Max
Signall 1] 8|LE = ||signed LlStandard hd 1] 1 0| -Inf| Inf
Signal2 8 sfie =lfsigned =[fstandard =] 0 1 0| Inf| Inf
Signal3 16 8JlE =lfsianed =lfstandard x| 0 1 0| Inf| Inf
Signal4| 24 8|l =llsigned =|lstandard =] 0 1 0| Anf| Inf
—Output ports
[T Output identifier [~ Output timestamp [~ output error
[~ output remote ™ Output length ™ Output status
Ok I Cancel | Help | Apply

The number of output ports on your block depends on the

number of signals you specify. For example, if you specify four

signals, your block has four output ports.

CANdb specified signals: Allows you to specify a CAN
database file that contains data signals. If you select this
option, select a CANdD file.

3-29

CAN Unpack

3-30

E! Function Block Parameters: CAN Unpack (With CANdb specified data output)

—CAM Unpack-

Unpack data from a CAN Message.

—Parameters

Data to be output as:

CANdb file: I CANdbFiles.dbc Browse... |

Message list: IDDDrConh’oIMsg LI
Messag
Mame: I DoorControlMsg
Identifier type: IStandard (11-bit identifier) j
Identifier: |4DD

Length (bytes): I 8

Signals: Add signal Delete signal |
Start [Length |Byte |Data Multiplex Multiplex .
Name bit (bits) order value Factor |Offset |Min |Max
DriverD 1 LLE = Jjunsigned LI Standard x| o] 1 1] 1] 1
Passeny 1] LLE = Jjunsigned LIIStandard hd o] 1 1] 1] 1
—Output ports

™ output identifier [~ Output timestamp [~ output error
™ Output remate ™ Output length ™ Output status

oK I Cancel | Help | Apply

The number of output ports on your block depends on the
number of signals specified in the CANdb file. For example, if
the selected message in the CANdb file has four signals, your
block has four output ports.

CANdb file
This option 1s available if you specify that your data is input via a
CAN(db file in the Data to be output as list. Click Browse to
find the appropriate CANdb file on your system. The messages
and signal definitions specified in the CANdDb file populate the

CAN Unpack

Message section of the dialog box. The signals specified in the
CAN(db file populate Signals table.

Message list
This option is available if you specify that your data is to be
output as a CANdD file in the Data to be output as list and you
select a CANdb file in the CANdDb file field. You can select the
message that you want to view. The Signals table then displays
the details of the selected message.

Message

Name
Specify a name for your CAN message. The default is CAN Msg.
This option is available if you choose to output raw data or
manually specify signals.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to output raw
data or manually specify signals. For CANdb-specified signals,
the Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a integer
from O through 2047 for a standard identifier and from 0 through
536870911 for an extended identifier. If you specify 1, the
block unpacks all messages that match the length specified for
the message. You can also specify hexadecimal values using the
hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your output data, the
CANCdb file defines the length of your message. If not, this field

3-31

CAN Unpack

defaults to 8. This option is available if you choose to output raw
data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdDb file.

If you are using a CANdDb file, the data in the file populates this table
automatically and you cannot edit any fields. To edit signal information,
switch to manually specified signals.

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message. The start
bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

¢ LE: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

3-32

CAN Unpack

Bit Number

Bit 7

Bit6

Bit5

Bit 4

Bit3

Bit 2

Bit1l

Bit 0

Byte 0

Data Byte Number

15

3l

14

a0

13

23

12

11

10

Data begins at the least significant

Byte 3 bit and starts at 20

a9 as a7 a6 s 34 a3 3z

Data is writen up to the most significant

Byte 4 bit and ends at 27

47 a6 45 44 43 42 41 40
Byte §

55 54 53 52 51 50 43 43
Byte 6

63 62 &1 &0 59 58 57 56
Byte 7

Little Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

BE: Where the byte order is in big-endian format (Motorola). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

3-33

CAN Unpack

3-34

Bit Number

Bit7

Data Byte Number

18

17

Data iswriten up to the most
significant bit and ends at |11
31 a0 29 27 26 5 24
Data begins at the least significant
Byte 3 it and starts at 20
a9 L a7 a6 as 34 a3 az
Byte 4
47 a6 45 44 43 42 41 40
Byte §
55 54 53 52 51 50 43 43
Byte 6
63 62 61 &0 59 58 57 56
Byte 7

Big Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.

Choose from:

signed (default)

unsigned
single
double

CAN Unpack

Multiplex type
Specify how the block unpacks the signals from the CAN message
at each timestep:

e Standard: The signal is always unpacked at each timestep.

® Multiplexor: The Multiplexor signal, or the mode signal is
always unpacked. You can specify only one Multiplexor signal
per message.

e Multiplexed: The signal is unpacked if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, if a message has four signals with the following

values.
Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example

® The block unpacks Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

e [f the value of Signal-D is 1 at a particular timestep, then the
block unpacks Signal-B along with Signal-A and Signal-D in
that timestep.

e [f the value of Signal-D is 0 at a particular timestep, then the
block unpacks Signal-C along with Signal-A and Signal-D in
that timestep.

e [f the value of Signal-D is not 1 or 0, the block does not unpack
either of the Multiplexed signals in that timestep.

3-35

CAN Unpack

Multiplex value
This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to unpack
the Multiplexed signal. The Multiplex value must be a positive
integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw
value to the physical value (signal value). See “Conversion
Formula” on page 3-37 to understand how unpacked raw values
are converted to physical values.

Offset
Specify the Offset value applied to convert the physical value
(signal value) to the unpacked raw value. See “Conversion
Formula” on page 3-37 to understand how unpacked raw values
are converted to physical values.

Min
Specify the minimum raw value of the signal. The default value
is -inf (negative infinity). You can specify any number for the
minimum value. See “Conversion Formula” on page 3-37 to
understand how unpacked raw values are converted to physical
values.

Max
Specify the maximum raw value of the signal. The default value
is inf. You can specify any number for the maximum value. See
“Conversion Formula” on page 3-37 to understand how unpacked
raw values are converted to physical values.

Output Ports

Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a CAN message identifier. The data
type of this port is uint32.

3-36

CAN Unpack

See Also

Output remote
Select this option to output the message remote frame status.
This option adds a new output port to the block. The data type of
this port is uint8.

Output timestamp
Select this option to output the message time stamp. This option
adds a new output port to the block. The data type of this port
is double.

Output length
Select this option to output the length of the message in bytes.
This option adds a new output port to the block. The data type of
this port is uint8.

Output error
Select this option to output the message error status. This option
adds a new output port to the block. The data type of this port is
uint8.

Output status
Select this option to output the message received status. The
status 1s 1 if the block receives new message and 0 if it does not.
This option adds a new output port to the block. The data type of
this port is uint8.

If you do not select any Output ports option, the number of output
ports on your block depends on the number of signals you specify.

Conversion Formula

The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value. physical value is the
scaled signal value which is saturated using the specified Min and
Max values.

CAN Pack

3-37

UDP Receive

3-38

Purpose

Library

Description

HOST

UDFP Recaive

i p

=g

UDFP Recaive

Receive uint8 vector as UDP message
Host Communication (hostcommlib)

A UDP message comes into this block from the transport layer. The
block passes the message to the next downstream block. One block
output provides the data vector from the message. The second output is
a flag that indicates when a new UDP message is available.

Models can contain only one UDP Receive block.

This block issues a function call from the fcn port when a new UDP
packet becomes available. At the same time, it updates the signal going
out of the msgport with the contents of the UDP packet. It reads a single
UDP packet every sample hit. It does not attempt to receive multiple
UDP packets to fill the output vector.

If the UDP packet size is greater than the output port width parameter,
the system truncates the UDP messages at the Msg port. As a result,
the system discards the part of the UDP packet that does not fit into the
Msg port. The system cannot recover discarded message content.

In some cases, the UDP packet size is smaller than the Msg port width.
When this condition occurs, the portion of the output vector that does
not fit into the specified size processes as invalid data.

UDP Receive

Dialog
Box

=] 5ource Block P

x|

— UDP Receive [mazk] [link]

Receive UDP packets from indicated IP address and IP port. Set
output port width parameter to the maximum expected UDP
packet size. Thiz blocks izsues a function call at port 1 whenewver
a new UDP packet iz available.

r— Parameter

|IP address to receive from [D.%.D to accept all):

[nooo

IP part ta receive from:

[25000
COutput port width (bytez):

f1

UDP receive buffer size [bytes]):

a9z

Sample time [zeconds):
0ot

0K I Cancel | Help

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages.
Setting the address 0.0.0.0 configures the block to accept messages
from any IP address. Setting a specific address, instead of the
default value, 0.0.0.0, directs the block to accept messages from

the specified address only.

IP port to receive from

Specify the port the block accepts messages from on this machine.
The other end of the communication, usually a UDP Send block,
sends messages to this port. The value defaults to 25000, but

the values range from 1-65535.

3-39

UDP Receive

Output port width (bytes)
Specifies the width of messages that the block accepts. When you
design the transmit end of the UDP communication channel, you
decide the message width. Set this option to a value as large or
larger than any message you expect to receive.

UDP receive buffer size (bytes)
Specify the size of the buffer to which the system stores UDP
messages. The default size is 8192 bytes. Make the buffer
large enough to store UDP messages that come in while your
process reads a message from the buffer or performs other
tasks. Specifying the buffer size prevents the receive buffer from
overflowing.

Sample time (seconds)
Use this option to specify when the block polls for new messages.
Enter a value that is greater than zero. Setting this option to a
large value reduces the likelyhood of dropped UDP messages. By
default, the sample time is 0.01 s.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Send

3-40

UDP Send

Purpose
Library

Description

TDE
Send

Send

Dialog
Box

Send UDP message
Host Communication (hostcommlib)

The UDP send block receives a uint8 vector that it sends as a UDP
message to the host. Input must be in the form of a uint8 vector with
UDP format.

Models can contain only one UDP Send block.

E! Sink Block Parameters: Send il
—LIDF Send (mask)

Send a lUOR packet to a remote interface identified by the IP
address and |F port parameters. Setuse local IF port parameter if
the remote interface is expecting data from a particular local port.

—Farameters

IF address to send to (265 255266 255 for broadcast):
55 255 255

ER

)
raga]

Remote IP portto send tao:
|25000

Use local IF paort (-1 for automatic port assignment):
1

Sample time (seconds):

0.01

0K I Cancel | Help | Al |

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message.
To broadcast the UDP message, retain the default value,
255.255.255.255.

3-41

UDP Send

3-42

IP port to send to
Specify the port to which the block sends the message. Port
numbers range from 1 to 65535. Configure the network port
receiving the UPD messages with the same port number.

Use the following local IP port
Specify the local IP port the block sends the message from.
Entering -1 (the default value) for this option allows the network
to select automatically the local IP port to use to send the message.

If the address you are sending to expects the message to come
from a specific port, enter that port address. If you enter a port
number in the UDP Receive block option IP port to receive
from, enter that port identifier instead of the port address.

Sample time
Sample time tells the block how long to wait before polling for
new messages.

See Also Byte PackByte Reversal, Byte Unpack, UDP Receive

blocks
CAN Pack 3-14
CAN Unpack 3-26
Byte Pack block 3-2
Byte Reversal block 3-5
Byte Unpack block 3-7

C
5510 DSK ADC 3-10

C5510 DSK DAC 3-12
CAN Pack block 3-14
CAN Unpack block 3-26

U

UDP Receive block 3-38
UDP Send block 3-41

Index-1

	toc
	System Requirements
	Block Reference
	CAN Message Handling Blocks (canmsglib)
	C5510 DSK (c5510dsk)
	Host Communication (hostcommlib)

	Blocks — Alphabetical List
	Data is input as

	Index

